

PM2019 - Titanium C/ODS

synthesize Ti-SiC powder¹ - HIP² - EIGA³ - ALM⁴ tensile strength +30%, elongation +25%

Simoloyer® CM100-s2, processing inert/vacuum; decorated MPP-NP

Zoz-MPI EIGA Additive Manufacturing ZAT 100 [1999] PM2019 test bodies AM complex structure

[advanced materials for additive manufacturing]

Since several years, Zoz in R&D is focusing on advanced (powder) materials that additionally to their properties allow consolidation by additive manufacturing. Particularly for high-strength materials, HPK (by Simoloyer®) does most frequently not provide the required morphology.

Developing processing routes from HKP / mechanical alloying e. g. through HIP-electrode manufacturing for EIGA, all under completely controlled condition, to result in utmost spherical particles at proper PSD, thus describes a challenge at high potential in ultra-materials sector.

[NANOTUN3D], an EU funded project, represents such successful example of joint research, where the C/ODS-strengthened Titanium (Ti6Al4V) is improved dramatically in strength and elongation at the same time: • nano-enhanced Titanium powder alloy (CDS/ODS)

- Nanodispersoids (SiC, Y₂O₃)
- · health, safety and environment datasheets
- 30% increase of mechanical behavior over standard Ti alloys
- 40% lower in material/process qualification than current solutions on the aerospace market
- for aerospace applications such as printed structural parts

Results Ti-6Al-4V-SiC¹⁻⁴ Strength & Elongation Increase

in respect to ASTM F2924 (%), Building Direction (BD)

BD	yield	tensile	elongation
XY	+ 31 %	+ 28 %	+ 16 %
Z	+ 32 %	+ 30 %	+ 36 %
	ASTM reference Ti6Al4V		
	825 MPa	895 MPa	10 %

¹SPP - Simoloyer® powder processing

²HIP - Hot Isostatic Pressing

³EIGA - Electrode Induction Melting Inert Gas Atomization

⁴ALM - Additive Layer Manufacturing