PM2019 - Titanium C/ODS synthesize Ti-SiC powder¹ - HIP² - EIGA³ - ALM⁴ tensile strength +30%, elongation +25% Simoloyer® CM100-s2, processing inert/vacuum; decorated MPP-NP Zoz-MPI EIGA Additive Manufacturing ZAT 100 [1999] PM2019 test bodies AM complex structure ## [advanced materials for additive manufacturing] Since several years, Zoz in R&D is focusing on advanced (powder) materials that additionally to their properties allow consolidation by additive manufacturing. Particularly for high-strength materials, HPK (by Simoloyer®) does most frequently not provide the required morphology. Developing processing routes from HKP / mechanical alloying e. g. through HIP-electrode manufacturing for EIGA, all under completely controlled condition, to result in utmost spherical particles at proper PSD, thus describes a challenge at high potential in ultra-materials sector. [NANOTUN3D], an EU funded project, represents such successful example of joint research, where the C/ODS-strengthened Titanium (Ti6Al4V) is improved dramatically in strength and elongation at the same time: • nano-enhanced Titanium powder alloy (CDS/ODS) - Nanodispersoids (SiC, Y₂O₃) - · health, safety and environment datasheets - 30% increase of mechanical behavior over standard Ti alloys - 40% lower in material/process qualification than current solutions on the aerospace market - for aerospace applications such as printed structural parts ## Results Ti-6Al-4V-SiC¹⁻⁴ Strength & Elongation Increase in respect to ASTM F2924 (%), Building Direction (BD) | BD | yield | tensile | elongation | |----|------------------------|---------|------------| | XY | + 31 % | + 28 % | + 16 % | | Z | + 32 % | + 30 % | + 36 % | | | ASTM reference Ti6Al4V | | | | | 825 MPa | 895 MPa | 10 % | ¹SPP - Simoloyer® powder processing ²HIP - Hot Isostatic Pressing ³EIGA - Electrode Induction Melting Inert Gas Atomization ⁴ALM - Additive Layer Manufacturing