

T +49-2762-9756-0 F +49-2762-9756-7

Heavy Duty Road Trucks - Diesel vs. Hydrogen

Hydrogen fuel cell vehicles are sustainable once hydrogen is produced from renewable energy. H2 offers a much higher specific energy than batteries and the lighter weight contributes to solving range

and payload issues inherent with a 100% battery-powered propulsion. Hydrogen provides on-board energy that powers the electric engine, significantly extending the vehicle's range capabilities compared to a straight battery solution and refuelling times are virtually the same compared to diesel. Fuelcell electric heavy-duty trucks are otherwise-conventional multi-ton trucks using compressed H2 gas to generate electric power via PEM fuelcells.

The particular more attractive H2-storage route utilizing hydrogen solid state absorber systems RTMH such as Hydrolium[®] / H2Tank2Go[®] (e. g. in multitank or large-tank arrangement), has not been demonstrated yet, thus represents an important future goal. No high pressure of H2 required (<10bar).

type of truck	MAN TGX 26.440 44to unit	e.g. MAN rebuilt to H2		
power system ⁽¹⁾	diesel engine	electric engine & fuelcell & buffer battery		
power	295kW (401hp) @ 1900 rpm	synchronic engine 250KW constant		
fuel	diesel	hydrogen		
energy density	12 kWh/kg	16.3 kWh/kg at 50% FC-efficiency		
energy conversion	direct	3x 116,66kW = 350kW (HT-PEMFC e. g. from Toyota Mirai)		
fuel consumption / 100 km	45 kg diesel (~53 liters)	15 kg H2 ⁽²⁾		
tank	2nos Al-tank (300l+250l)	H2-RTMH solid state absorber		
tank volume	5501	2151	4251	6401
range	1.000 km	100km	200km	300km
tank weight (full)	~1.0to	~1to	~2to	~3to
weight H2-RTMH	no	$850 \text{ kg}^{2)}$	1.700 kg	2.550 kg
refuelling time	30min	~1h	~2h	~3h
investment cost	today low	today high, tomorrow medium		
maintenance cost	medium	today medium, tomorrow low		
fuel cost	today high, tomorrow higher	today high, tomorrow lower		

 "Development of Business Cases for Fuel Cells and Hydrogen Applications for European Regions and Cities" commissioned by the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH2JU), N°FCH/OP/contract 180, Reference Number FCH JU2017 D4259
15kg H₂ is required to run 40 t turck for 100km (15/0.018 – 840kn) of RT_MH required to adsorb 15kg H₂

(2) 15kg H_2 is required to run 40 t truck for 100 km (15/0.018 = 840 kg) of RT-MH required to adsorb 15kg H_2

