

T +49-2762-9756-0 F +49-2762-9756-7 2018-07 MechanoChemistry One Page page 1

MechanoChemistry

new structures and applications by Simoloyer® solvent-free 🔅 CO₂-low 🌣 cost efficient resource efficient chemical synthesis

high kinetic processing for environmental friendly production

Industry						
Chemical industry		synthesis/manufactur no solvents less VO	ing of fine chemicals C	at lower costs highe	r efficiency environ	mentally friendly less or even
Pharmaceutical industry		production of drugs a processes	at little or no contamin	nation small to high q	uantities lower costs	higher efficiency single step
Food industry		production of food ad	lditives at lower costs			
Stainless steel industry		efficient recycling of	EAF dust sustainabl	e waste management	less recycling costs	
Product/innovation real	ady	to market proved				
technologically	\rightarrow	dioxine decontamina	tion by Simoloyer® pr	oved and patented		Simoloyer [®] CM01-s1
economically	\rightarrow	cost effective produc	tion of various compo	unds by single step pro	ocess proved	(auto-batch)
ecologically	\rightarrow	recycling of EAF dus	st by leaching of zinc a	after HKP		
Technical advantages						
scalability		batches from few g to	o kg proved, tonnes po	ossible		
processing		batch operation as well as continuous operation possible				
purification		dry process avoids so	olvents and low contar	nination		
application		Simoloyer [®] plant ins	tead of reactors			
Cost advantages						
solvent-free	\rightarrow	less costs for supporting media, less waste management costs				
high energy impact	\rightarrow	shorter processing times				
few to no contamination	\rightarrow	less efforts for purification necessary				
Schedule & volumes			option (a)	option (b)	option (c)	

References

EAF recycling	H. Zoz, G. Kaupp, H. Ren, K. Goepel, M. R. Naimi-Jamal: Recycling of EAF dust by semi-continuous high kinetic process, <i>Metall</i> , 59(5), 2005, 200-202				
	G. Kaupp; E. Martinez F., H. Ren, D. Jaramillo V., H. Zoz: High Kinetic Processing of EAF dust and a new hydrometallurgical recycling scheme, <i>Metall</i> , 62(12), 2008, 809-810				
Mechanochemical synthesis	G. Kaupp, J. Schmeyers, M. R. Naimi-Jamal, H. Zoz, H. Ren: Reactive milling with the Simoloyer [®] : environmentally benign quantitative reactions without solvents and wastes, <i>Chem. Eng. Sci.</i> 57, 2002 , 763-765				
	H. Ren, H. Zoz, G. Kaupp, M. R. Naimi-Jamal: Environmentally protecting reactive milling, Adv. Powder Metall. Parti. Mater., 2003, 216–222				
	G. Kaupp, M. R. Naimi-Jamal, H. Ren, H. Zoz: Reactive Dry-Milling for Environmental Protection - encouraging industrial applications for High Kinetic Processing, <i>PROCESS Worldwide</i> , 4, 2003 , 24-27				
	DBU-Project: Resource-efficient chemical synthesis - process development in ball mills for solvent-free reactions: RESPEKT, AZ 29622-31, 2012-2015				
Dioxine decontamination	G Kaupp H Zoz: Verfahren zur Dekontamination hzw Detoxifizierung von Umweltgiften z B Dioxiden				

dioxine decontamination

HKP on technical scale

Zn EAF dust recycling